HomeFreeBSD

Pull in r325446 from upstream clang trunk (by me):

Description

Pull in r325446 from upstream clang trunk (by me):

[X86] Add 'sahf' CPU feature to frontend

Summary:
Make clang accept `-msahf` (and `-mno-sahf`) flags to activate the
`+sahf` feature for the backend, for bug 36028 (Incorrect use of
pushf/popf enables/disables interrupts on amd64 kernels).  This was
originally submitted in bug 36037 by Jonathan Looney
<jonlooney@gmail.com>.

As described there, GCC also uses `-msahf` for this feature, and the
backend already recognizes the `+sahf` feature. All that is needed is
to teach clang to pass this on to the backend.

The mapping of feature support onto CPUs may not be complete; rather,
it was chosen to match LLVM's idea of which CPUs support this feature
(see lib/Target/X86/X86.td).

I also updated the affected test case (CodeGen/attr-target-x86.c) to
match the emitted output.

Reviewers: craig.topper, coby, efriedma, rsmith

Reviewed By: craig.topper

Subscribers: emaste, cfe-commits

Differential Revision: https://reviews.llvm.org/D43394

Pull in r328944 from upstream llvm trunk (by Chandler Carruth):

[x86] Expose more of the condition conversion routines in the public
API for X86's instruction information. I've now got a second patch
under review that needs these same APIs. This bit is nicely
orthogonal and obvious, so landing it. NFC.

Pull in r329414 from upstream llvm trunk (by Craig Topper):

[X86] Merge itineraries for CLC, CMC, and STC.

These are very simple flag setting instructions that appear to only
be a single uop. They're unlikely to need this separation.

Pull in r329657 from upstream llvm trunk (by Chandler Carruth):

[x86] Introduce a pass to begin more systematically fixing PR36028
and similar issues.

The key idea is to lower COPY nodes populating EFLAGS by scanning the
uses of EFLAGS and introducing dedicated code to preserve the
necessary state in a GPR. In the vast majority of cases, these uses
are cmovCC and jCC instructions. For such cases, we can very easily
save and restore the necessary information by simply inserting a
setCC into a GPR where the original flags are live, and then testing
that GPR directly to feed the cmov or conditional branch.

However, things are a bit more tricky if arithmetic is using the
flags.  This patch handles the vast majority of cases that seem to
come up in practice: adc, adcx, adox, rcl, and rcr; all without
taking advantage of partially preserved EFLAGS as LLVM doesn't
currently model that at all.

There are a large number of operations that techinaclly observe
EFLAGS currently but shouldn't in this case -- they typically are
using DF.  Currently, they will not be handled by this approach.
However, I have never seen this issue come up in practice. It is
already pretty rare to have these patterns come up in practical code
with LLVM. I had to resort to writing MIR tests to cover most of the
logic in this pass already.  I suspect even with its current amount
of coverage of arithmetic users of EFLAGS it will be a significant
improvement over the current use of pushf/popf. It will also produce
substantially faster code in most of the common patterns.

This patch also removes all of the old lowering for EFLAGS copies,
and the hack that forced us to use a frame pointer when EFLAGS copies
were found anywhere in a function so that the dynamic stack
adjustment wasn't a problem. None of this is needed as we now lower
all of these copies directly in MI and without require stack
adjustments.

Lots of thanks to Reid who came up with several aspects of this
approach, and Craig who helped me work out a couple of things
tripping me up while working on this.

Differential Revision: https://reviews.llvm.org/D45146

Pull in r329673 from upstream llvm trunk (by Chandler Carruth):

[x86] Model the direction flag (DF) separately from the rest of
EFLAGS.

This cleans up a number of operations that only claimed te use EFLAGS
due to using DF. But no instructions which we think of us setting
EFLAGS actually modify DF (other than things like popf) and so this
needlessly creates uses of EFLAGS that aren't really there.

In fact, DF is so restrictive it is pretty easy to model. Only STD,
CLD, and the whole-flags writes (WRFLAGS and POPF) need to model
this.

I've also somewhat cleaned up some of the flag management instruction
definitions to be in the correct .td file.

Adding this extra register also uncovered a failure to use the
correct datatype to hold X86 registers, and I've corrected that as
necessary here.

Differential Revision: https://reviews.llvm.org/D45154

Together, these should ensure clang does not use pushf/popf sequences to
save and restore flags, avoiding problems with unrelated flags (such as
the interrupt flag) being restored unexpectedly.

Requested by: jtl
PR: 225330
MFC after: 1 week

Details

Provenance
dimAuthored on Apr 14 2018, 12:07 PM
Parents
rGa3d2e7b1ca42: sys: remove 'cm' from notes
Branches
Unknown
Tags
Unknown

Event Timeline